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In a wide class of conductors, the presence of strong electric fields disrupts the linearity 
of the relationship between the current density and the electric field strength. Plasma and 

semiconductors exhibit the most observable deviations from the Ohm’s law. This lack of 
linearity results from the fact that the current carriers assume nonequilibrium states. DU- 
ring the collisions, the electrons transfer their energy to the ions, molecules e.t.c. rela- 

tively slow because of their small mass. At the same time, they possess arbitrarily large 
free paths and can, therefore absorb large amount of energy from the electric field between 
successive coHisions. Thus their temperature may differ appreciably from the equilibrium 
temperature due to the heating effect of the field. 

Since initial equations are nonlinear, we may experience a difficulty in determining the 

current distribution in media with these properties. However, using the hodograph transfer 
mation we can linearise the electrodynamic equations. This, and use of approximate meth- 
ods, give us an effective procedure for computing the electric fields in nonlinearly conduc- 
ting media. 

1. Equations of the force and potential functions of an electric 
current. Equation of state will be our starting point in constructing electrodynsmic rela- 

tions for the dense, nonlinearly conducting media. Its general form is 

F (j, E, (5, 5, y, z, t ,...) = 0 (1.1) 

and we see from it that a relation exists between the structure of the medium and the eleo 
tric field. This relation does not necessarily yield itself to the theoretical approach and is, 
generally found by experiment or by inference. 

In this paper we consider an isotropic, homogeneous medium under isothermal conditions. 
In this case we have enough physical data on which to base an assumption that the equa- 
tion of state can be represented as 

j = 0 (i) E, i=lji (1.2 

where E is the electric field strength vector and cr denotes the electric conductivity of the 
medium depending uniquely on the current density i. 

To simplify the theoretical considerations that follow and to give a clearer picture of 
electrodynamic phenomena in a nonlinear medium, we shall only study twodimensional 
steady fieIds, Condition of the continuity of current and the law of induction, yield two eq- 
uations 

(1.3) 

from which it follows that we can introduce the force stream function QG, ~1 and the poten- 

tial stream function P (z, y) by means of 
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Khen 

(1.4) 

(1.5) 

is taken into account, we obtain (1.3) as 

ai, ai,, I 
L_- 

ay dx J” 
(1.6) 

J2 = u j(da/dj) -l is the specific electric curreut density defining the degree of nonlinearity 

of the medium, or of the variation in conductivity. Khen the conductivity of the medium de- 
pends strongly on the current density j, then J assumes its smallest values, if on the other 

hand the nonlinearity disappears, then .I2 + 00. 

Relations (1.6) and (1.3) yield the following expressiou for Q (z, y) 

To obtain an equation for P (x, y) we use the following relations: 

obtained from (1.4). together with the condition of continuity of the current (1.3). Simple 
transformations yield 

$$ +8$--&[(g)‘g-zggg+ (g)“ag+I (1.9) 

Quasilinear T:qs. (1.7) and (1.9) 1 lave the same external appearance and are of the mixed 

elliptic-hyperbolic type. The difference between them lies in the fact that expressions for 

the specific current density / in terms of P and Q are not the same, and that the differen- 

ces between them are not necessarily simple. 

If cr is independent of j (linear medium), then P and Q are harmonic functions 

NJ (5, Y) = 0, AQ (x, Y) = 0 (A=d2/dx2+d2/8y2) (1.10) 

This fact is widely used when methods of the theory of the complex variable are applied 
to the computation of electric fields. 

Nonlinear f.qs. (1.7) and (1.9) are not easy to investigate and they are usually solved 

with help of various approximate methods. In particular, when the conductivity CJ depends 

weakly on j and, as a result, J assumes large values, we can expand P and Q into series in 

terms of a small parameter l/I 2 

(1.11) 

where the principal term of the series P, (x, y) corresponds to the solution of the linear 
conductivity, while the remaining terms P, (x, y) (i = 1, 2,... ) satisfy linear elliptic equa- 

tions obtained by the substitution of (1.11) into (1.9). 

2. Mapping onto the hodograph plane. We can transform exact nonlinear 

Eqs. (1.7) and (1.9) into exact linear equations by interchanging the dependent and indepen- 

dent variables. ‘VVe either use the Legendre transformation, or introduce j and 6(j = Ijl, (8 
is the angle between the vector j and the x-axis) as independent variables. Roth methods 
are equivalent and their use in nonlinear electrodynamics is, in fact, analogous to the cor- 

responding transformations in the theory of compressible fluid flows [ 1 and 23. 

By (1.4) we can write 
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dQ = j,dy- j,dx, adP=ixdx$iYdy 

from which it follows that 

dn=(odP+idQ)$-, i = (i 2 + i 
X 

%)‘/I, 
Y 

8 = arc tg 2 

(2.4) 

(2.2: 

Differentiating last two equations in 9 and j respectively, gives 

aQ -CT I---)-, 
ai ( 

i da aP dQ 
6 dl ae --_cis 

ae - 

which easily yield equations for P and Q in the hodograph plane 

av I- rq av i+r2ap 
aiJ-+-~+i~=Q 

(2.3) 

(2.4) 

aaQ 
al’+ yg ++(&e) 

) 
aQ ( 

rz+-$j 

-=O 
(2.5) 

Here rz = iz/l* is a pure number characterizing the nonlinear conductivity. It plays an 

important role in the problems of electrodynamics of nonlinearly conducting media. In the 

following three cases of the distribution of current r < 1, r = 1 and r > 1. Eqs. (2.4) and 

(2.5) will be elliptic, parabolic and hyperbolic, respectively, We see that, depending on the 

type of our equation, the processes taking place in a nonlinear medium may differ apprecia- 

bly. When r < 1, current distribution is defined by an elliptic equation and its solution can 

be obtained in terms of smooth functions. When r> 1, Eqs. (2.4) and (2.5) are hyperbolic 

and the solutions may exhibit discontinuities (on the characteristics). This points to the 

possibility of existence of electric shock waves in a nonlinear medium. Finally, if the con- 

ductivity CT is linearly dependent on the electric current density (cz m j, r = l), then (2.4), 

say, becomes parabolic 

aaP 2 aP 
.p+Tai=O (2.6) 

We note that Eqs. (2.4) to (2.6) are linear and that their solutions are, therefore much sim- 

pler than those of the corresponding nonlinear Eqs. (1.7) and fi.9) in the physical plane. We 

should however remember that when definite problems are being solved in the bodograph 

plane, boundary conditions become more complex and sometimes they cannot be obtained. 

3. Nonlinear phenomena in plasma. Some energy relationships in the non- 

linear plasma can be studied on the basis of the elementary theory. A number of physical 

problems arising in the studies of nonlinear conductivity in the plasma and computation of 

fields in such media (particularly in the cases when the conductivity is weakly dependent 

on the current density j), was investigated in 13 and 41. 

When only elastic collisions are present, the energy balance for the electrons in an elec- 

tric field per unit time, can be written as [5] 

jE=+i3+-k(T,-T) (3.1) 

where n, and T are the concentration and effective time of collision of electrons; 6 is the 
mean amount of energy transferred from an electron during its collision with heavy particles 

T and T, denote the effective temperatures of heavy particles and electrons, respectively. 

Magnitudes 8, no and T depend on T, and are obtained either on the basis of the kinetic 

theory, or by suitable experiments. In particular, for weakly and fully ionised plasma we 

have L?= 2m,/m,, --t, 10-t to 10-5 h w ere m,is the mass of a heavy particles and m, is the 

mass of an electron. 
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Left-hand side of (3.1) denotes the work done by the field on the plasma in unit time, 
while the right-hand side denotes the energy lost by an electron in collisions with heavy 
particles. 

Assuming that 

j = aE, 0 = n,e% / m, (3.2) 

we can write (3.11 as 

(3.31 

OC, since j = n,, eV and 8 = 2m ./ma (v is the velocity vector of the oriented motion of elec- 

trons), as 

Since vu ’ is proportional to the local kinetic energy in the plasma and v to the local 

electric field strength, the dimensionless parameter h characterizes the local ratio of the 
field strength to the thermal energy of the plasma. Moreover, u,,, denotes the maximum 
possible velocity of the oriented motion of electrons. 

We shaI1 now establish the character of nonlinearity in the plasma, by estimating the 
dimensionless parameters r and iz, Returning to Expression (3.21 which gives the conduc- 
tivity we find, that the electron concentration n, and their relaxation time T depend, in gen- 
eral, on 7’, and therefore on the electric field. Three cases are possible: (a) ne = const, 
7(Te 1; t(b) ns CT, 1, dT, 1 and (cl ne (To), 7 = const. 

The first and simplest situation occurs, apparently, in the strongly ionised plasma. We 
can assume that 

~=Q,(T,/T)~ (3.5) 

where ho is the time of relaxation when i’, = T and y is a parameter dependent on the mech- 
anism of electron-electron collision, is approximately true. Then by the previous formulas 
we have the following expressions for the conductivity 

for the specific current density 

d5 -1 
2 

Jt= bj di 
i ) 

vmax 0 a _ = n,serv,* 
= %?-e 2?( 

and for the dimensionless number 

Here V* is the critical velocity of the electrons. If the oriented electron velocity is less 
than critical (V <v, 1 then r < 1 and the solutions of (2.4) and (2.51 are smooth. On the oth- 

er hand, when u > Y* , we have r > 1 and discontinuities in the electric field are quite pos- 
sible. The latter can take place when the inequality 0 <v* <v,,, < (*) holds, which is 
possible whenever y > % (e.g. when electrons collide with ions, we have y = 3/21. 

In two remaining cases the dependence of the electron concentration on T, is quite com- 
plicated (for a weakly ionised plasma the ‘Saha equation is applicable), therefore the inter- 

pretation of V* becomes leas obvious. 
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The steady-state theory of thermal explosion is concerned with solutions of the following 
boundary value problem [l and 21: 

AT+tp(T)=O, Tj,=O (0.1) 

where r is the surface enclosing the region G (a vessel), T is the temperature and q CT) is 
a positive, monotonously increasing function differentiable on [O, + m]. If a solution of 
(0.1) exists, then we assume that no explosion takes place in the vessel G, otherwise we 
assume that it does occur. In [l and 2] the problem was studied for g,(T) = eT and the re- 
gions which possessed plane, cylindrical or spherical symmetry. In accordance with this 
the problem can be reduced to a problem for a segment, circle or a sphere with one indepen- 
dent variable equal to the distance from the center. 

For a segment, the problem (0.1) becomes 

In [l and 21 it was shown that a criticsl value h = he exists for q(T) = eT such, that 
when O,< A,< h + , a solution of (0.2) exists. When h > h ), we have no solution, while when 
0 < h < h *, we actually have two solutions. 

ture and introducing the function h = h (Tm ), 
Denoting by T,, = T (0) the maximum tempera- 

we obtain the corresponding curve as shown on 
Fig. 1. By symmetry we have dT/dx = 0 when x = 0 and the function h (T,) is singlevalued 
and continuous (a solution of the Cauchy’s problem for (0.2) with conditions dT/dr = 0 and 
T = T, when x = 0 exists aad depends continuously on T,). In the case of a circle we have 
the analogous result. In the case of a sphere, a critical value of the radius exists also, but 
according to [2] the curve h (T,,,) ‘s 1 more complex. In/31 the problem was investigated for a 
function q,(T) of the sufficiently general form and it was found that more than two solutions 

may exist for a given h, although uniqueness is not excluded. The curve h fT,) may have 


